Measuring User Satisfaction on Smart Speaker Intelligent Assistants Using Intent Sensitive Query Embeddings

Abstract

Intelligent assistants are increasingly being used on smart speaker devices, such as Amazon Echo, Google Home, Apple Homepod, and Harmon Kardon Invoke with Cortana. Typically, user satisfaction measurement relies on user interaction signals, such as clicks and scroll movements, in order to determine if a user was satisfied. However, these signals do not exist for smart speakers, which creates a challenge for user satisfaction evaluation on these devices. In this paper, we propose a new signal, user intent, as a means to measure user satisfaction. We propose to use this signal to model user satisfaction in two ways: 1) by developing intent sensitive word embeddings and then using sequences of these intent sensitive query representations to measure user satisfaction; 2) by representing a user’s interactions with a smart speaker as a sequence of user intents and thus using this sequence to identify user satisfaction. Our experimental results indicate that our proposed user satisfaction models based on the intent-sensitive query representations have statistically significant improvements over several baselines in terms of common classification evaluation metrics. In particular, our proposed task satisfaction prediction model based on intent-sensitive word embeddings has a 11.81% improvement over a generative model baseline and 6.63% improvement over a user satisfaction prediction model based on Skip-gram word embeddings in terms of the F1 metric. Our findings have implications for the evaluation of Intelligent Assistant systems.

Publication
International Conference on Information and Knowledge Management (CIKM 2018)